Case Studies

Aug 12, 2019

S.R.Bazaz, N.Kashaninejad, S.Azadi, K.Patel, M.Asadnia, M.E.Warkiani


Polydimethylsiloxane (PDMS) is a long‐standing material of significant interest in microfluidics due to its unique features. As such, rapid prototyping of PDMS‐based microchannels is of great interest. The most prevalent and conventional method for fabrication of PDMS‐based microchips relies on softlithography, the main drawback of which is the preparation of a master mold, which is costly and time‐consuming. To prevent the attachment of PDMS to the master mold, silanization is necessary, which can be detrimental for cellular studies. Read More

May 26, 2019

H.Sorotsky, M.Aparanthi, D.Z.Wang, F.McFadden, S.N.Popescu, R.M.Mohamadi, M.Pereira, J.Weiss, D.Patel, S.Majeed, M.Cabanero, A.G.Sacher, P.A.Bradbury, N.B.Leighl, F.A.Shepherd, M.S.Tsao, G.Lui, S.O.Kelly, B.H.Lok


Background: Tumor heterogeneity and evolution of SCLC is poorly defined. Serial longitudinal interrogation of tumor heterogeneity from CTCs detected in peripheral blood patient (pt) samples is a potential strategy to address this gap in knowledge. Read More

Lab on a Chip, 2016

E.M. Hamad , S.E.R. Bilatto, N.Y. Adly,  D.S. Correa, B.Wolfrum, M.J. Schoning, A.Offenhausser and A.Yakushenko


Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing. Read More