Case Studies

Case Studies

Download the Presentation

2020

Sajad Razavi Bazaz, Omid Rouhi, MohammadAmin Raouf, Fatemeh Ejeian, MohsenAsadnia, Dayong Jin and Majid Ebrahimi Warkiani

Abstract

Inertial microfuidics has been broadly investigated, resulting in the development of various
applications, mainly for particle or cell separation. Lateral migrations of these particles within a
microchannel strictly depend on the channel design and its cross-section. Read More

2020

Jesus Shrestha, Maliheh Ghadiri, Melane Shanmugavel, Sajad Razavi Bazaz, Steven Vasilescu, Lin Ding and Majid Ebrahimi Warkiani

Abstract

Organ-on-a-chip is a microfluidic cell culture model that replicates key organ-specific microarchitecture and pathophysiology in vitro. The current methods to fabricate these devices rely on softlithography, which is usually tedious, laborious, and requires adroit users as well as cleanroom facilities. Read More

Mar 20, 2020

  1. Zongjie Wang
  2. Mark Gagliardi
  3. Reza M. Mohamad
  4. Sharif U. Ahmed
  5. Mahmoud Labib
  6. Libing Zhang
  7. Sandra Popescu
  8. Yuxiao Zhou
  9. Edward H. Sargent
  10. Gordon M. Keller and 
  11. Shana O. Kelley

Abstract

The ability to detect rare human pluripotent stem cells (hPSCs) in differentiated populations is critical for safeguarding the clinical translation of cell therapy, as these undifferentiated cells have the capacity to form teratomas in vivo. The detection of hPSCs must be performed using an approach compatible with traceable manufacturing of therapeutic cell products. Here, we report a novel microfluidic approach, stem cell quantitative cytometry (SCQC), for the quantification of rare hPSCs in hPSC-derived cardiomyocyte (CM) populations.  Read More

Aug 12, 2019

S.R.Bazaz, N.Kashaninejad, S.Azadi, K.Patel, M.Asadnia, M.E.Warkiani

Abstract

Polydimethylsiloxane (PDMS) is a long‐standing material of significant interest in microfluidics due to its unique features. As such, rapid prototyping of PDMS‐based microchannels is of great interest. The most prevalent and conventional method for fabrication of PDMS‐based microchips relies on softlithography, the main drawback of which is the preparation of a master mold, which is costly and time‐consuming. To prevent the attachment of PDMS to the master mold, silanization is necessary, which can be detrimental for cellular studies. Read More

May 26, 2019

H.Sorotsky, M.Aparanthi, D.Z.Wang, F.McFadden, S.N.Popescu, R.M.Mohamadi, M.Pereira, J.Weiss, D.Patel, S.Majeed, M.Cabanero, A.G.Sacher, P.A.Bradbury, N.B.Leighl, F.A.Shepherd, M.S.Tsao, G.Lui, S.O.Kelly, B.H.Lok

Abstract

Background: Tumor heterogeneity and evolution of SCLC is poorly defined. Serial longitudinal interrogation of tumor heterogeneity from CTCs detected in peripheral blood patient (pt) samples is a potential strategy to address this gap in knowledge. Read More

July 9-13, 2018

Francisco J. Galindo-Rosales

Abstract

The second edition of the “Summer School on Complex Fluid-Flows in Microfluidics” was held at the Faculty of Engineering of the University of Porto, Portugal from July 9 – 13, 2018 sponsored by Anton Paar, Applied Sciences, BlackHole Lab, Elveflow, Formulaction, the Portuguese Society of Rheology, and Rheinforce (in alphabetical order). The company Creative CADWorks kindly provided microfluidic connectors, chips and molds fabricated with its 3DprinterRead More

Apr 2, 2018

Mahmoud Labib, Reza M. Mohamadi, Mahla Poudineh, Sharif U. Ahmed, Ivaylo Ivanov, Ching-Lung Huang, Maral Moosavi, Edward H. Sargent & Shana O. Kelley

Abstract

Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequencesRead More

Feb 06, 2018

Mahla Poudineh, Edward H. Sargent, Klaus Pantel & Shana O. Kelley

Abstract

During cancer progression, many tumours shed circulating tumour cells (CTCs) and other biomarkers into the bloodstream. The analysis of CTCs offers the prospect of collecting a liquid biopsy from a patient’s blood to predict and monitor therapeutic responses and tumour recurrence. In this Review, we discuss progress towards the isolation and recovery of bulk CTCs from whole blood samples for the identification of cells with high metastatic potential. Read More

Nov 21, 2016

Mahla Poudineh, Peter M. Aldridge, Sharif Ahmed, Brenda J. Green, Leyla Kermanshah, Vivian Nguyen, Carmen Tu, Reza M. Mohamadi, Robert K. Nam, Aaron Hansen, Srikala S. Sridhar, Antonio Finelli, Neil E. Fleshner, Anthony M. Joshua5, Edward H. Sargent and Shana O. Kelley

Abstract

Profiling the heterogeneous phenotypes of rare circulating tumour cells (CTCs) in whole blood is critical to unravelling the complex and dynamic properties of these potential clinical markers. This task is challenging because these cells are present at parts per billion levels among normal blood cells. Here we report a new nanoparticle-enabled method for CTC characterization, called magnetic ranking cytometry, which profiles CTCs on the basis of their surface expression phenotype. We achieve this using a microfluidic chip that successfully processes whole blood samples.  Read More

Lab on a Chip, 2016

E.M. Hamad , S.E.R. Bilatto, N.Y. Adly,  D.S. Correa, B.Wolfrum, M.J. Schoning, A.Offenhausser and A.Yakushenko

Abstract

Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing. Read More